
What's new in the LLVM
Ecosystem, and how does that

affect the kernel?

Marshall Clow
Qualcomm Technologies, Inc.

mclow@qti.qualcomm.com
Twitter: @mclow

What is LLVM?

• Used to stand for “Low Level Virtual Machine”

• Now it’s just a name

• A set of libraries and tools for manipulating source and
object code

Sanitizers

• Find a particular kind of bug

• Instrumentation in the compiler

• Custom runtime

• Goals: 0 false positives, exact reporting

Existing Sanitizers

• Address Sanitizer (ASAN)

• Undefined Behavior Sanitizer (UBSAN)

• Memory Sanitizer (MSAN)

• Thread Sanitizer (TSAN)

Address Sanitizer
 and the Kernel

• https://code.google.com/p/address-sanitizer/wiki/
AddressSanitizerForKernel

• found use-after-free, out-of-bounds read/write, stack-
overflow bugs.

clang-tidy
• An extensible tool to find/fix bugs

• Based on AST matching

• Currently ships with 110 checkers

• Can include static-analyzer tests

• http://clang.llvm.org/extra/clang-tidy.html

• http://clang-analyzer.llvm.org/
available_checks.html#unix_checkers

clang-tidy checkers

• swapped-arguments

• void f(int, float); f(1.f, 2); // compiles, but is probably
wrong.

• memset(foo, sizeof(foo), 0); // size == 0?

• long *p = malloc(sizeof(short)); // really?

other uses

• There’s a checker for cyclomatic complexity - find
complicated functions

• Checkers can suggest fixes, and may (if the user
wants) rewrite the source code (-fix option)

• The LLVM project wrote a checker that checked the
names of the header guards, and then ran it against
LLVM and updated 100s of header files.

Refactoring framework

• There’s a full set of facilities for writing refactoring
tools in LLVM

• Many of these are used by clang-tidy, but can be
used in other tools

• Great talk at CppCon this year by Hyrum Wright

• https://www.youtube.com/watch?v=ZpvvmvITOrk

clang-format

• source code formatting tool

• style is data-driven

• built in styles are: LLVM, Google, Chromium, Mozilla,
WebKit

• used by refactoring framework to make refactoring
changes match.

• Can be used as stand-alone tool as well

